Operator expressions
Syntax
OperatorExpression :
BorrowExpression
| DereferenceExpression
| ErrorPropagationExpression
| NegationExpression
| ArithmeticOrLogicalExpression
| ComparisonExpression
| LazyBooleanExpression
| TypeCastExpression
| AssignmentExpression
| CompoundAssignmentExpression
Operators are defined for built in types by the Rust language. Many of the
following operators can also be overloaded using traits in std::ops
or
std::cmp
.
Overflow
Integer operators will panic when they overflow when compiled in debug mode.
The -C debug-assertions
and -C overflow-checks
compiler flags can be used
to control this more directly. The following things are considered to be
overflow:
- When
+
,*
or-
create a value greater than the maximum value, or less than the minimum value that can be stored. This includes unary-
on the smallest value of any signed integer type. - Using
/
or%
, where the left-hand argument is the smallest integer of a signed integer type and the right-hand argument is-1
. - Using
<<
or>>
where the right-hand argument is greater than or equal to the number of bits in the type of the left-hand argument, or is negative.
Borrow operators
Syntax
BorrowExpression :
(&
|&&
) Expression
| (&
|&&
)mut
Expression
The &
(shared borrow) and &mut
(mutable borrow) operators are unary prefix
operators. When applied to a place expression, this expressions produces a
reference (pointer) to the location that the value refers to. The memory
location is also placed into a borrowed state for the duration of the reference.
For a shared borrow (&
), this implies that the place may not be mutated, but
it may be read or shared again. For a mutable borrow (&mut
), the place may not
be accessed in any way until the borrow expires. &mut
evaluates its operand in
a mutable place expression context. If the &
or &mut
operators are applied
to a value expression, then a temporary value is created.
These operators cannot be overloaded.
# #![allow(unused_variables)] #fn main() { { // a temporary with value 7 is created that lasts for this scope. let shared_reference = &7; } let mut array = [-2, 3, 9]; { // Mutably borrows `array` for this scope. // `array` may only be used through `mutable_reference`. let mutable_reference = &mut array; } #}
Even though &&
is a single token (the lazy 'and' operator),
when used in the context of borrow expressions it works as two borrows:
# #![allow(unused_variables)] #fn main() { // same meanings: let a = && 10; let a = & & 10; // same meanings: let a = &&&& mut 10; let a = && && mut 10; let a = & & & & mut 10; #}
The dereference operator
Syntax
DereferenceExpression :
*
Expression
The *
(dereference) operator is also a unary prefix operator. When applied to
a pointer it denotes the pointed-to location. If
the expression is of type &mut T
and *mut T
, and is either a local
variable, a (nested) field of a local variance or is a mutable place
expression, then the resulting memory location can be assigned to.
Dereferencing a raw pointer requires unsafe
.
On non-pointer types *x
is equivalent to *std::ops::Deref::deref(&x)
in an
immutable place expression context and
*std::ops::Deref::deref_mut(&mut x)
in a mutable place expression context.
# #![allow(unused_variables)] #fn main() { let x = &7; assert_eq!(*x, 7); let y = &mut 9; *y = 11; assert_eq!(*y, 11); #}
The question mark operator
Syntax
ErrorPropagationExpression :
Expression?
The question mark operator (?
) unwraps valid values or returns errornous
values, propagating them to the calling function. It is a unary postfix
operator that can only be applied to the types Result<T, E>
and Option<T>
.
When applied to values of the Result<T, E>
type, it propagates errors. If
the value is Err(e)
, then it will return Err(From::from(e))
from the
enclosing function or closure. If applied to Ok(x)
, then it will unwrap the
value to evaulate to x
.
# #![allow(unused_variables)] #fn main() { # use std::num::ParseIntError; fn try_to_parse() -> Result<i32, ParseIntError> { let x: i32 = "123".parse()?; // x = 123 let y: i32 = "24a".parse()?; // returns an Err() immediately Ok(x + y) // Doesn't run. } let res = try_to_parse(); println!("{:?}", res); # assert!(res.is_err()) #}
When applied to values of the Option<T>
type, it propagates Nones
. If the
value is None
, then it will return None
. If applied to Some(x)
, then it
will unwrap the value to evaluate to x
.
# #![allow(unused_variables)] #fn main() { fn try_option_some() -> Option<u8> { let val = Some(1)?; Some(val) } assert_eq!(try_option_some(), Some(1)); fn try_option_none() -> Option<u8> { let val = None?; Some(val) } assert_eq!(try_option_none(), None); #}
?
cannot be overloaded.
Negation operators
Syntax
NegationExpression :
-
Expression
|!
Expression
These are the last two unary operators. This table summarizes the behavior of them on primitive types and which traits are used to overload these operators for other types. Remember that signed integers are always represented using two's complement. The operands of all of these operators are evaluated in value expression context so are moved or copied.
Symbol | Integer | bool | Floating Point | Overloading Trait |
---|---|---|---|---|
- | Negation* | Negation | std::ops::Neg | |
! | Bitwise NOT | Logical NOT | std::ops::Not |
* Only for signed integer types.
Here are some example of these operators
# #![allow(unused_variables)] #fn main() { let x = 6; assert_eq!(-x, -6); assert_eq!(!x, -7); assert_eq!(true, !false); #}
Arithmetic and Logical Binary Operators
Syntax
ArithmeticOrLogicalExpression :
Expression+
Expression
| Expression-
Expression
| Expression*
Expression
| Expression/
Expression
| Expression%
Expression
| Expression&
Expression
| Expression|
Expression
| Expression^
Expression
| Expression<<
Expression
| Expression>>
Expression
Binary operators expressions are all written with infix notation. This table summarizes the behavior of arithmetic and logical binary operators on primitive types and which traits are used to overload these operators for other types. Remember that signed integers are always represented using two's complement. The operands of all of these operators are evaluated in value expression context so are moved or copied.
Symbol | Integer | bool | Floating Point | Overloading Trait |
---|---|---|---|---|
+ | Addition | Addition | std::ops::Add | |
- | Subtraction | Subtraction | std::ops::Sub | |
* | Multiplication | Multiplication | std::ops::Mul | |
/ | Division | Division | std::ops::Div | |
% | Remainder | Remainder | std::ops::Rem | |
& | Bitwise AND | Logical AND | std::ops::BitAnd | |
| | Bitwise OR | Logical OR | std::ops::BitOr | |
^ | Bitwise XOR | Logical XOR | std::ops::BitXor | |
<< | Left Shift | std::ops::Shl | ||
>> | Right Shift* | std::ops::Shr |
* Arithmetic right shift on signed integer types, logical right shift on unsigned integer types.
Here are examples of these operators being used.
# #![allow(unused_variables)] #fn main() { assert_eq!(3 + 6, 9); assert_eq!(5.5 - 1.25, 4.25); assert_eq!(-5 * 14, -70); assert_eq!(14 / 3, 4); assert_eq!(100 % 7, 2); assert_eq!(0b1010 & 0b1100, 0b1000); assert_eq!(0b1010 | 0b1100, 0b1110); assert_eq!(0b1010 ^ 0b1100, 0b110); assert_eq!(13 << 3, 104); assert_eq!(-10 >> 2, -3); #}
Comparison Operators
Syntax
ComparisonExpression :
Expression==
Expression
| Expression!=
Expression
| Expression>
Expression
| Expression<
Expression
| Expression>=
Expression
| Expression<=
Expression
Comparison operators are also defined both for primitive types and many type in
the standard library. Parentheses are required when chaining comparison
operators. For example, the expression a == b == c
is invalid and may be
written as (a == b) == c
.
Unlike arithmetic and logical operators, the traits for overloading the operators the traits for these operators are used more generally to show how a type may be compared and will likely be assumed to define actual comparisons by functions that use these traits as bounds. Many functions and macros in the standard library can then use that assumption (although not to ensure safety). Unlike the arithmetic and logical operators above, these operators implicitly take shared borrows of their operands, evaluating them in place expression context:
a == b;
// is equivalent to
::std::cmp::PartialEq::eq(&a, &b);
This means that the operands don't have to be moved out of.
Symbol | Meaning | Overloading method |
---|---|---|
== | Equal | std::cmp::PartialEq::eq |
!= | Not equal | std::cmp::PartialEq::ne |
> | Greater than | std::cmp::PartialOrd::gt |
< | Less than | std::cmp::PartialOrd::lt |
>= | Greater than or equal to | std::cmp::PartialOrd::ge |
<= | Less than or equal to | std::cmp::PartialOrd::le |
Here are examples of the comparison operators being used.
# #![allow(unused_variables)] #fn main() { assert!(123 == 123); assert!(23 != -12); assert!(12.5 > 12.2); assert!([1, 2, 3] < [1, 3, 4]); assert!('A' <= 'B'); assert!("World" >= "Hello"); #}
Lazy boolean operators
Syntax
LazyBooleanExpression :
Expression||
Expression
| Expression&&
Expression
The operators ||
and &&
may be applied to operands of boolean type. The
||
operator denotes logical 'or', and the &&
operator denotes logical
'and'. They differ from |
and &
in that the right-hand operand is only
evaluated when the left-hand operand does not already determine the result of
the expression. That is, ||
only evaluates its right-hand operand when the
left-hand operand evaluates to false
, and &&
only when it evaluates to
true
.
# #![allow(unused_variables)] #fn main() { let x = false || true; // true let y = false && panic!(); // false, doesn't evaluate `panic!()` #}
Type cast expressions
Syntax
TypeCastExpression :
Expressionas
PathInExpression
A type cast expression is denoted with the binary operator as
.
Executing an as
expression casts the value on the left-hand side to the type
on the right-hand side.
An example of an as
expression:
# #![allow(unused_variables)] #fn main() { # fn sum(values: &[f64]) -> f64 { 0.0 } # fn len(values: &[f64]) -> i32 { 0 } fn average(values: &[f64]) -> f64 { let sum: f64 = sum(values); let size: f64 = len(values) as f64; sum / size } #}
as
can be used to explicitly perform coercions, as
well as the following additional casts. Here *T
means either *const T
or
*mut T
.
Type of e | U | Cast performed by e as U |
---|---|---|
Integer or Float type | Integer or Float type | Numeric cast |
C-like enum | Integer type | Enum cast |
bool or char | Integer type | Primitive to integer cast |
u8 | char | u8 to char cast |
*T | *V where V: Sized * | Pointer to pointer cast |
*T where T: Sized | Numeric type | Pointer to address cast |
Integer type | *V where V: Sized | Address to pointer cast |
&[T; n] | *const T | Array to pointer cast |
Function pointer | *V where V: Sized | Function pointer to pointer cast |
Function pointer | Integer | Function pointer to address cast |
* or T
and V
are compatible unsized types, e.g., both slices, both the
same trait object.
Semantics
- Numeric cast
- Casting between two integers of the same size (e.g. i32 -> u32) is a no-op
- Casting from a larger integer to a smaller integer (e.g. u32 -> u8) will truncate
- Casting from a smaller integer to a larger integer (e.g. u8 -> u32) will
- zero-extend if the source is unsigned
- sign-extend if the source is signed
- Casting from a float to an integer will round the float towards zero
- NOTE: currently this will cause Undefined Behavior if the rounded value cannot be represented by the target integer type. This includes Inf and NaN. This is a bug and will be fixed.
- Casting from an integer to float will produce the floating point representation of the integer, rounded if necessary (rounding strategy unspecified)
- Casting from an f32 to an f64 is perfect and lossless
- Casting from an f64 to an f32 will produce the closest possible value (rounding strategy unspecified)
- Enum cast
- Casts an enum to its discriminant, then uses a numeric cast if needed.
- Primitive to integer cast
false
casts to0
,true
casts to1
char
casts to the value of the code point, then uses a numeric cast if needed.
u8
tochar
cast- Casts to the
char
with the corresponding code point.
- Casts to the
Assignment expressions
Syntax
AssignmentExpression :
| Expression=
Expression
An assignment expression consists of a place expression followed by an
equals sign (=
) and a value expression.
Evaluating an assignment expression drops the left-hand operand, unless it's an unitialized local variable or field of a local variable, and either copies or moves its right-hand operand to its left-hand operand. The left-hand operand must be a place expression: using a value expression results in a compiler error, rather than promoting it to a temporary.
# #![allow(unused_variables)] #fn main() { # let mut x = 0; # let y = 0; x = y; #}
Compound assignment expressions
Syntax
CompoundAssignmentExpression :
Expression+=
Expression
| Expression-=
Expression
| Expression*=
Expression
| Expression/=
Expression
| Expression%=
Expression
| Expression&=
Expression
| Expression|=
Expression
| Expression^=
Expression
| Expression<<=
Expression
| Expression>>=
Expression
The +
, -
, *
, /
, %
, &
, |
, ^
, <<
, and >>
operators may be
composed with the =
operator. The expression place_exp OP= value
is
equivalent to place_expr = place_expr OP val
. For example, x = x + 1
may be
written as x += 1
. Any such expression always has the unit
type.
These operators can all be overloaded using the trait with the same name as for
the normal operation followed by 'Assign', for example, std::ops::AddAssign
is used to overload +=
. As with =
, place_expr
must be a place
expression.
# #![allow(unused_variables)] #fn main() { let mut x = 10; x += 4; assert_eq!(x, 14); #}